Rozdział 6

CZARNE DZIURY

Termin "czarna dziura" powstał bardzo niedawno. Wprowadził go w 1969 roku amerykański uczony John Wheeler, przedstawiając za jego pomocą obrazowo ideę, która pojawiła się po raz pierwszy co najmniej 200 lat temu. Istniały wówczas dwie konkurencyjne teorie światła: według pierwszej, popieranej przez Newtona, światło składać się miało z cząstek, druga teoria głosiła natomiast, że światło to fale. Dziś wiemy, że w zasadzie obie teorie są poprawne. Zgodnie z dualizmem falowo-korpuskularnym mechaniki kwantowej światło należy uważać zarówno za fale, jak i za cząstki. Jeśli przyjmujemy falową teorię światła, nie jest jasne, jak powinno ono reagować na grawitację. Jeżeli jednak światło składa się z cząstek, należy oczekiwać, że pod wpływem ciążenia zachowują się one jak pociski artyleryjskie, rakiety czy też planety. Początkowo uważano, że cząstki światła poruszają się nieskończenie szybko, a zatem grawitacja nie może ich wyhamować; po stwierdzeniu przez Roemera, że prędkość światła jest skończona, należało jednak przyjąć, iż grawitacja może mieć istotny wpływ na ruch światła.
To założenie wykorzystał John Michell, profesor z Cambridge, w swej pracy z 1783 roku, opublikowanej w Philosophical Transactions of the Royal Society of London. Michell wykazał, że gwiazda o dostatecznie wielkiej masie i gęstości wytwarzałaby tak silne pole grawitacyjne, iż światło nie mogłoby jej opuścić: wszelkie światło wypromieniowane z powierzchni gwiazdy zostałoby przyciągnięte z powrotem przez siłę ciążenia, nim zdołałoby się oddalić. Michell sugerował, że takich gwiazd może być bardzo wiele. Chociaż nie widzielibyśmy ich światła, potrafilibyśmy wykryć ich obecność dzięki ich przyciąganiu grawitacyjnemu. Dzisiaj takie obiekty nazywamy czarnymi dziurami, ponieważ tak właśnie wyglądają: czarne, nie świecące obszary w przestrzeni. Parę lat później podobną hipotezę wysunął niezależnie od Michella francuski uczony, markiz Laplace. Jest rzeczą interesującą, że Laplace przedstawił ją tylko w dwóch pierwszych wydaniach swej książki System świata, a pominął w wydaniach późniejszych, doszedłszy być może do wniosku, że jest to pomysł zbyt szalony. (Mógł mieć znaczenie również fakt, iż cząstkowa teoria światła utraciła popularność w XIX wieku. Sądzono powszechnie, że wszystko można wyjaśnić za pomocą teorii falowej, a z tej teorii wcale jasno nie wynikało, że grawitacja wpływa na rozchodzenie się światła).

W istocie rzeczy, w ramach teorii grawitacji Newtona, nie można bez uwikłania się w sprzeczności traktować cząstek światła podobnie do pocisków artyleryjskich, ponieważ prędkość światła jest stała. (Pocisk wystrzelony z powierzchni Ziemi pionowo do góry zwalnia pod wpływem siły ciążenia i w końcu spada; foton natomiast musi poruszać się do góry ze stałą prędkością. W jaki sposób zatem newtonowska grawitacja może wywierać wpływ na ruch światła?) Spójnej teorii opisującej poprawnie działanie grawitacji na światło brakło aż do 1915 roku, kiedy Einstein ogłosił ogólną teorię względności. Zresztą wiele czasu minęło jeszcze i od tego momentu, nim zrozumiano właściwie, jakie znaczenie ma nowa teoria dla zachowania gwiazd o dużej masie.

Plejady (M45) - w mgławicy tej zanurzone są młode gwiazdy, które utworzyły się właśnie z gazów tejże mgławicy

Aby zrozumieć, jak powstają czarne dziury, musimy najpierw zrozumieć ewolucję zwykłych gwiazd. Gwiazda powstaje, gdy duża ilość gazu (głównie wodoru), zaczyna się kurczyć pod wpływem własnego przyciągania grawitacyjnego. Atomy w gęstniejącej chmurze gazu zderzają się między sobą ze wzrastającą częstością i osiągają coraz większe prędkości - temperatura gazu wzrasta. W końcu staje się tak wysoka, że zderzające się jądra wodoru nie odbijają się od siebie, lecz łączą, tworząc hel. Dzięki ciepłu uwolnionemu w takiej reakcji, która przypomina kontrolowany wybuch bomby wodorowej, gwiazda świeci. To dodatkowe ciepło powoduje, że ciśnienie gazu wzrasta, aż wreszcie staje się ono dostatecznie wielkie, by zrównoważyć przyciąganie grawitacyjne i zatrzymać kontrakcję obłoku gazu. Przypomina to równowagę balonu - tam istnieje równowaga między ciśnieniem powietrza wewnątrz, które stara się powiększyć balon, i napięciem gumowej powłoki, dążącej do zmniejszenia balonu. W gwiazdach utrzymuje się przez bardzo długi czas stan równowagi między ciśnieniem podtrzymywanym przez ciepło pochodzące z reakcji jądrowych a przyciąganiem grawitacyjnym. W końcu jednak gwiazda wyczerpuje swój zapas wodoru i innych paliw dla reakcji jądrowych. Paradoksalnie, im większy jest początkowy zapas paliwa, tym szybciej się wyczerpuje. Dzieje się tak, ponieważ im większą masę ma gwiazda, tym wyższa musi być jej temperatura wewnętrzna, by ciśnienie mogło zrównoważyć przyciąganie grawitacyjne. A im wyższa temperatura, tym szybciej przebiegają jądrowe reakcje i szybciej zużywa się paliwo. Nasze Słońce dysponuje prawdopodobnie zapasem paliwa wystarczającym na jakieś pięć miliardów lat (znacznie mniej niż liczy sobie nasz wszechświat), ale gwiazdy o większej masie mogą zużyć swe paliwo w ciągu stu milionów lat. Kiedy rezerwy paliwa gwiazdy kończą się, gwiazda stygnie i ulega skurczeniu. Co może dziać się z nią dalej, zrozumiano dopiero pod koniec lat dwudziestych.

W 1928 roku hinduski doktorant Subrahmanyan Chandrasekhar pożeglował do Anglii, aby studiować w Cambridge pod kierunkiem brytyjskiego astronoma Sir Arthura Eddingtona, znanego eksperta w zakresie ogólnej teorii względności. (Według niektórych źródeł, na początku lat dwudziestych pewien dziennikarz zapytał Eddingtona, czy prawdą jest, że tylko trzej ludzie na świecie rozumieją teorię względności; po chwili zastanowienia Eddington odrzekł: "Próbuję zgadnąć, kim może być ten trzeci?") W trakcie podróży Chandrasekhar obliczył, jak wielka może być gwiazda, zdolna do przeciwstawienia się własnemu przyciąganiu grawitacyjnemu, już po zużyciu paliwa jądrowego. Rozumował w sposób następujący: gdy gwiazda kurczy się, maleją odległości między cząstkami materii, zatem, jak wynika z zasady Pauliego, muszą mieć one bardzo różne prędkości. To powoduje wzrost odległości między nimi i rozszerzanie się gwiazdy. Możliwe jest zatem zachowanie stanu równowagi: promień gwiazdy nie zmienia się, ponieważ przyciąganie grawitacyjne zostaje zrównoważone przez odpychanie powstające zgodnie z zasadą wykluczania Pauliego, tak jak poprzednio było zrównoważone przez ciepło.
Chandrasekhar uświadomił sobie jednak, że ciśnienie wytworzone zgodnie z zasadą wykluczania ma swoje granice. Z teorii względności wynika, że maksymalna różnica prędkości cząstek materii w gwieździe nie może przewyższyć prędkości światła. To oznacza, że gdy gęstość gwiazdy przekracza pewną wartość krytyczną, ciśnienie wynikające z zasady wykluczania staje się słabsze niż przyciąganie grawitacyjne. Chandrasekhar obliczył, iż zimna gwiazda o masie równej półtorej masy Słońca nie jest w stanie przeciwstawić się własnemu polu grawitacyjnemu. (Ta masa krytyczna jest znana jako graniczna masa Chandrasekhara). Do podobnych wniosków doszedł w tym samym mniej więcej czasie rosyjski uczony Lew Dawidowicz Landau.

Mgławica "Ślimak" - w centrum mgławicy widoczny jest Biały Karzeł

Z tych rezultatów wynikały poważne konsekwencje dla ostatecznego losu masywnych gwiazd. Jeśli masa gwiazdy jest mniejsza od masy granicznej Chandrasekhara, to gwiazda w końcu przestaje się kurczyć i osiąga swój stan końcowy, stając się "białym karłem"  o promieniowaniu paru tysięcy kilometrów i gęstości rzędu setek ton na centymetr sześcienny. Białe karły istnieją dzięki ciśnieniu elektronów, wynikającemu z zasady wykluczania. Zaobserwowano bardzo wiele takich gwiazd. Jednym z najwcześniej odkrytych karłów jest gwiazda krążąca wokół Syriusza, najjaśniejszej gwiazdy na niebie.

Landau wskazał też, że gwiazda o maksymalnej masie w przybliżeniu dwa razy większej niż masa Słońca i promieniu znacznie mniejszym niż promień nawet białego karła może osiągnąć inny stan końcowy. Takie gwiazdy utrzymywane są w równowadze nie przez ciśnienie elektronów, lecz przez ciśnienie neutronów i protonów, wytworzone również zgodnie z zasadą wykluczania. Nazwano je gwiazdami neutronowymi.  Ich promień wynosi około 15 kilometrów, a gęstość osiąga setki milionów ton na centymetr sześcienny. Kiedy po raz pierwszy stwierdzono możliwość istnienia gwiazd neutronowych, nie było jeszcze środków technicznych, które umożliwiłyby ich zaobserwowanie; nastąpiło to dopiero znacznie później.

Z drugiej strony, gwiazdy o masie większej niż granica Chandrasekhara stoją - by tak rzec - przed poważnym problemem, gdy kończy się ich paliwo. Niektóre z takich gwiazd eksplodują albo udaje im się pozbyć części swojej materii i w ten sposób obniżają swą masę poniżej granicy Chandrasekhara, co pozwala im uniknąć zapadania się pod wpływem przyciągania grawitacyjnego. Trudno jednak uwierzyć, że dzieje się tak zawsze, bez względu na to, jak wielka jest masa gwiazd. Skąd gwiazda miałaby wiedzieć, że powinna pozbyć się nadwagi? A nawet jeśli wszystkie gwiazdy pozbywają się nadwyżki masy i unikają zapadnięcia się, to co stanie się w wypadku, gdy na powierzchnię białego karła lub gwiazdy neutronowej spadnie tyle materii, że całkowita masa stanie się większa od masy granicznej? Czy wtedy zapadnie się do stanu o nieskończonej gęstości?
Eddington był tak zaszokowany tymi konsekwencjami, że odmówił przyjęcia do wiadomości wyników Chandrasekhara. Według niego było po prostu niemożliwe, by cała gwiazda skurczyła się do punktu. Pogląd ten dzieliło większość uczonych, sam Einstein napisał pracę, w której twierdził, że gwiazdy nie skurczą się do rozmiarów punktu. Wrogi stosunek innych uczonych, a szczególnie Eddingtona, który był jego nauczycielem i czołowym autorytetem w dziedzinie struktury gwiazd, sprawił, że Chandrasekhar porzucił ten kierunek badań i zajął się innymi problemami astronomicznymi, takimi jak ewolucja gromad gwiezdnych. Nagrodę Nobla, którą otrzymał w 1983 roku, przyznano mu jednak głównie za wczesne prace o granicznej masie zimnych gwiazd. Chandrasekhar udowodnił, że ciśnienie wynikające z zasady wykluczania nie może powstrzymać zapadania grawitacyjnego gwiazdy o masie większej niż masa graniczna. Problem, co dzieje się - według teorii względności - z taką gwiazdą dalej, rozwiązał, jako pierwszy, młody Amerykanin, Robert Oppenheimer, w 1939 roku. Z jego prac wynikało, że żadnych konsekwencji tego procesu nie dałoby się zaobserwować za pomocą ówczesnych teleskopów. Potem wybuchła II wojna światowa i Oppenheimer zaangażował się w konstrukcję bomby atomowej. Po wojnie problem grawitacyjnego zapadania się gwiazd został niemal zupełnie zapomniany, ponieważ większość fizyków zajęła się badaniem tego, co dzieje się w skali atomu i jego jądra. Ale w latach sześćdziesiątych, za sprawą ogromnego wzrostu liczby informacji obserwacyjnych, który umożliwiła nowoczesna technika, odżyło zainteresowanie wielkoskalowymi problemami astronomii i kosmologii. Wtedy liczni uczeni odkryli ponownie rezultaty Oppenheimera i podjąwszy własne badania, znacznie je wzbogacili.

Z prac Oppenheimera wyłania się następujący obraz końcowego stanu gwiazdy. Grawitacyjne pole gwiazdy zmienia trajektorie promieni świetlnych w czasoprzestrzeni - w pustej czasoprzestrzeni byłyby one inne. Stożki świetlne, które pokazują, jak rozchodzą się w czasoprzestrzeni błyski światła z ich wierzchołków, są pochylone do środka w pobliżu powierzchni gwiazdy. Ten efekt można obserwować, mierząc ugięcie promieni świetlnych z dalekich gwiazd w pobliżu Słońca w trakcie zaćmienia. W miarę jak gwiazda się kurczy, pole grawitacyjne na jej powierzchni staje się coraz silniejsze i stożki świetlne coraz bardziej pochylają się w kierunku środka. Z tego powodu trudniej jest światłu uciec z powierzchni gwiazdy; dalekiemu obserwatorowi wydaje się ono słabsze, a jego kolor przesunięty ku czerwieni. W końcu, gdy gwiazda skurczy się tak dalece, że jej promień będzie mniejszy niż promień krytyczny, pole grawitacyjne na jej powierzchni stanie się tak silne, że stożki świetlne tak mocno pochylą się ku środkowi, iż światło nie będzie mogło już uciec (rys. 18).

Zgodnie z teorią względności nic nie może poruszać się szybciej niż światło. Skoro zatem światło nie może uciec z powierzchni gwiazdy, nic innego nie jest w stanie tego dokonać: pole grawitacyjne ściąga wszystko z powrotem. Wobec tego istnieje pewien zbiór zdarzeń, pewien obszar czasoprzestrzeni, z którego nic nie może się wydostać, by dotrzeć do odległego obserwatora. Ten właśnie region nazywamy czarną dziurą. Jego granicę nazywamy horyzontem zdarzeń; składa się on z trajektorii promieni światła, którym niemal udało się wydostać z czarnej dziury.

Aby zrozumieć, co zobaczylibyśmy, obserwując zapadnięcie się zwykłej gwiazdy i powstanie czarnej dziury, musimy pamiętać, że w teorii względności nie ma absolutnego czasu. Każdy obserwator mierzy swój własny czas. Czas obserwatora na powierzchni gwiazdy jest różny niż czas odległego obserwatora, ponieważ pierwszy znajduje się w bardzo silnym polu grawitacyjnym. Załóżmy, że pewien nieustraszony astronauta stojący na powierzchni zapadającej się gwiazdy, co sekundę, wedle wskazań swego zegarka, wysyła sygnały w kierunku statku kosmicznego orbitującego z dala od gwiazdy. W pewnej chwili, powiedzmy o 11.00 na zegarku astronauty, promień gwiazdy staje się mniejszy niż promień krytyczny, a więc pole grawitacyjne staje się tak silne, że nic nie może już uciec, i następne sygnały astronauty nie dotrą do statku. W miarę jak zbliża się 11.00, jego koledzy na statku stwierdzają, że odstępy między kolejnymi sygnałami wydłużają się, choć efekt ten jest bardzo słaby aż do 10.59.59. Odstęp między odbiorem sygnału wysłanego przez astronautę, gdy jego zegar pokazywał 10.59.58, a rejestracją sygnału wysłanego o 10.59.59 jest tylko minimalnie dłuższy niż jedna sekunda, ale czas oczekiwania na następny sygnał będzie już nieskończony. Fale światła wysłane z powierzchni gwiazdy między 10.59.59 a 11.00.00, według zegara astronauty, będą wiecznie docierać do statku kosmicznego, wedle zegarów pokładowych. Odstępy czasu między odbiorem kolejnych fal będą coraz dłuższe, tak że światło będzie wydawać się coraz słabsze i coraz bardziej czerwone. W końcu gwiazda stanie się tak ciemna, że nie będzie jej już widać ze statku kosmicznego: pozostanie tylko czarna dziura w przestrzeni. Gwiazda będzie jednak w dalszym ciągu przyciągać statek z taką samą siłą grawitacyjną jak przedtem, zatem będzie on nadal okrążał czarną dziurę. Ten scenariusz nie jest całkowicie realistyczny, z uwagi na następujący problem. Siła ciążenia słabnie ze wzrostem odległości od gwiazdy, zatem siła grawitacyjna działająca na stopy naszego nieustraszonego astronauty będzie zawsze większa niż działająca na jego głowę. Różnica ta sprawi, że astronauta zostanie rozciągnięty jak spaghetti  lub rozerwany na części, nim gwiazda skurczy się do rozmiarów mniejszych niż promień krytyczny i powstanie horyzont zdarzeń. Sądzimy jednak, że we wszechświecie istnieją znacznie większe obiekty, takie jak centralne części galaktyk, które także mogą zapadać się grawitacyjnie i tworzyć czarne dziury; astronauta znajdujący się na podobnym obiekcie nie zostałby rozerwany na strzępy przed utworzeniem się czarnej dziury. W gruncie rzeczy nie czułby on nic szczególnego w chwili, gdy promień stałby się mniejszy od krytycznego, i przekroczyłby punkt, od którego nie ma odwrotu, nawet tego nie zauważając. Ale już po paru godzinach, w miarę jak obszar ten zapadałby się grawitacyjnie, różnica sił działających na jego stopy i na głowę wzrosłaby na tyle, że i w tym wypadku zostałby rozerwany na części.

W latach 1965 - 1970 wspólnie z Rogerem Penrose'em wykazałem, że zgodnie z ogólną teorią względności wewnątrz czarnej dziury musi istnieć osobliwość - to znaczy punkt, gdzie gęstość materii i krzywizna czasoprzestrzeni są nieskończone. Osobliwość ta przypomina wielki wybuch u początków czasu, ale tym razem jest to koniec czasu dla zapadającego się ciała i astronauty. W punkcie osobliwym załamują się wszystkie prawa fizyki, a więc i nasza zdolność przewidywania przyszłości. Jednakże obserwator znajdujący się poza czarną dziurą zachowałby zdolność przewidywania, ponieważ ani światło, ani żadne inne sygnały nie mogą do niego dotrzeć z osobliwości. Ten godny uwagi fakt skłonił Rogera Penrose'a do sformułowania hipotezy kosmicznej cenzury, którą można sparafrazować następująco: "Bóg brzydzi się nagimi osobliwościami". Innymi słowy, osobliwości będące skutkiem grawitacyjnego zapadania się ciał pojawiają się tylko w takich miejscach, jak czarne dziury, gdzie horyzont zdarzeń skrywa je przyzwoicie, uniemożliwiając ich obserwację z zewnątrz. Mówiąc ściśle, to stwierdzenie wyraża tak zwaną słabą zasadę kosmicznej cenzury: chroni ona obserwatora znajdującego się na zewnątrz czarnej dziury przed skutkami utraty zdolności przewidywania w osobliwości, lecz nie pomaga w niczym biednemu astronaucie, który wpadł do czarnej dziury.

Istnieją pewne rozwiązania równań ogólnej teorii względności pozwalające astronaucie zobaczyć nagą osobliwość i przeżyć: może on uniknąć zderzenia z osobliwością, a zamiast tego wpaść do "dziury wygryzionej przez robaki", wiodącej do innego regionu wszechświata. To może sugerować wspaniałe możliwości podróży w czasie i przestrzeni, ale niestety wygląda na to, iż wszystkie tego rodzaju rozwiązania są wysoce niestabilne: najmniejsze zaburzenie, takie jak obecność astronauty, tak zmienia rozwiązanie, że astronauta nie zobaczy osobliwości do chwili zderzenia się z nią, w ten sposób dochodząc do kresu swego czasu. Inaczej mówiąc, osobliwość będzie się zawsze znajdować w jego przyszłości, a nigdy w przeszłości. Silna zasada kosmicznej cenzury stwierdza, iż w dowolnym realistycznym rozwiązaniu osobliwości muszą zawsze znajdować się albo całkowicie w przyszłości (jak osobliwości powstałe wskutek grawitacyjnego zapadnięcia się ciała), albo całkowicie w przeszłości (jak w modelu wielkiego wybuchu). Należy mieć nadzieję, ze któraś wersja hipotezy kosmicznej cenzury okaże się prawdziwa, ponieważ w pobliżu osobliwości nie jest wykluczona podróż w przeszłość. Taka możliwość powinna ucieszyć autorów książek fantastycznonaukowych, ale znaczyłoby to, że niczyje życie nie byłoby już bezpieczne: ktoś mógłby wybrać się w przeszłość i zabić twoich rodziców przed twoim poczęciem!

Horyzont zdarzeń, czyli granica obszaru czasoprzestrzeni, z którego nie można uciec, działa podobnie do jednokierunkowej membrany wokół czarnej dziury: różne obiekty, na przykład nieostrożni astronauci, mogą wpaść do czarnej dziury przez horyzont zdarzeń, ale nic nie może przekroczyć horyzontu w drugim kierunku i wydostać się z niej. (Pamiętajmy, że horyzont zdarzeń utworzony jest przez trajektorie promieni świetlnych, które bezskutecznie próbują wydostać się z czarnej dziury, i że nic nie może poruszać się szybciej niż światło). Mówiąc o horyzoncie zdarzeń, można posłużyć się słowami, które według Dantego wypisane są nad wejściem do piekła: "Który tu wchodzisz, rozstań się z nadzieją". Cokolwiek i ktokolwiek przekroczy horyzont zdarzeń i wpadnie do czarnej dziury, dotrze wkrótce do regionu nieskończonej gęstości i kresu czasu.

Z ogólnej teorii względności wynika, iż ciała o wielkiej masie, poruszając się, emitują fale grawitacyjne, to znaczy rozchodzące się z prędkością światła zaburzenia krzywizny przestrzeni. Fale grawitacyjne przypominają fale świetlne, będące zaburzeniami pola elektromagnetycznego, są jednak o wiele trudniejsze do wykrycia. Podobnie jak światło, fale grawitacyjne unoszą energię z wysyłającego je ciała. Wobec tego można oczekiwać, że dowolny układ poruszających się ciał o dużej masie wcześniej czy później osiągnie stan stacjonarny, gdyż energia ruchu ciał zostanie uniesiona przez wysyłane fale grawitacyjne. (Przypomina to ruch korka rzuconego na powierzchnię wody: początkowo korek gwałtownie podskakuje, lecz w miarę jak fale unoszą jego energię, korek uspokaja się i osiąga stan stacjonarny). Na przykład, ruch Ziemi dookoła Słońca powoduje emisję fal grawitacyjnych. Wskutek utraty energii promień orbity Ziemi maleje i w końcu Ziemia zderzy się ze Słońcem, osiągając stan stacjonarny. W wypadku ruchu Ziemi moc promieniowania jest bardzo mała: wystarczyłoby jej zaledwie na zasilanie małego grzejnika elektrycznego. Oznacza to, że zanim nastąpi zderzenie Ziemi ze Słońcem,


Pulsar w mgławicy "Krab"

 upłynie jeszcze jakieś miliard miliardów miliardów lat, nie ma powodu zatem, by martwić się już teraz! Zmiana orbity Ziemi spowodowana promieniowaniem grawitacyjnym jest zbyt mała, by można ją było zaobserwować, ale ten sam efekt obserwowano przez ostatnie parę lat w układzie zwanym PSR 1913+16 (PSR oznacza pulsar, czyli specjalny rodzaj gwiazdy neutronowej, wysyłającej regularne impulsy fal radiowych). Ten układ składa się z dwóch gwiazd neutronowych krążących wokół siebie; utrata energii wskutek promieniowania grawitacyjnego powoduje, że zbliżają się one do siebie po spirali.

W trakcie grawitacyjnego zapadania się zwykłej gwiazdy zmieniającej się w czarną dziurę materia gwiazdy porusza się o wiele prędzej, stąd też utrata energii zachodzi znacznie szybciej. Osiągnięcie stanu stacjonarnego nie powinno więc trwać długo. Jaki jest ten stan końcowy? Można by przypuszczać, że zależy on od wszystkich złożonych cech gwiazdy, z której powstał - nie tylko od jej masy i prędkości rotacji, ale też rozkładu gęstości i skomplikowanego ruchu gazu w gwieździe. A jeśli czarne dziury są równie różnorodne jak obiekty, które uległy grawitacyjnemu zapadaniu się, to określenie ogólnych własności czarnych dziur może okazać się czymś bardzo trudnym.
Jednakże w 1967 roku Werner Israel, uczony kanadyjski (urodzony w Berlinie, wychowany w Afryce Południowej, doktoryzował się w Irlandii), zrewolucjonizował badania czarnych dziur. Israel wykazał, że zgodnie z ogólną teorią względności nie obracające się czarne dziury muszą być bardzo proste; muszą być dokładnie sferyczne, a ich promień zależy wyłącznie od masy. Dwie nie obracające się czarne dziury o takich samych masach są identyczne. Opisuje je pewne rozwiązanie równań Einsteina, znalezione przez Karla Schwarzschilda w 1917 roku, wkrótce po powstaniu ogólnej teorii względności. Początkowo wielu badaczy, z samym Israelem włącznie, twierdziło, że skoro czarna dziura musi być dokładnie sferyczna, to może powstać wyłącznie na skutek zapadnięcia się dokładnie sferycznego obiektu. A zatem każda rzeczywista gwiazda - która nie jest przecież nigdy doskonale sferyczna - musi w trakcie zapadania się utworzyć nagą osobliwość, a nie czarną dziurę.
Wynik Israela można jednak interpretować w odmienny sposób, za którym opowiedzieli się w szczególności Roger Penrose i John Wheeler. Zgodnie z ich argumentami, gwałtowne ruchy materii gwiazdy w trakcie jej grawitacyjnego zapadania się powodują taką emisję fal grawitacyjnych, że gwiazda staje się coraz bardziej sferyczna; końcowy stan stacjonarny jest już doskonale sferyczny. Zgodnie z tą koncepcją, dowolna nie rolująca gwiazda, niezależnie od swego kształtu i struktury wewnętrznej, kończy po grawitacyjnym zapadnięciu się jako doskonale sferyczna czarna dziura, której wielkość zależy wyłącznie od masy. Dalsze rachunki potwierdziły słuszność tej koncepcji i została ona powszechnie przyjęta.
Rezultaty otrzymane przez Israela dotyczyły wyłącznie czarnych dziur powstałych z nie obracających się obiektów. W 1963 roku Nowozelandczyk Roy Kerr podał zbiór rozwiązań równań ogólnej teorii względności opisujących rotujące czarne dziury. Czarne dziury Kerra obracają się ze stałą prędkością, a ich kształt i wielkość zależą tylko od mas i prędkości rotacji. Przy zerowej prędkości obrotowej czarna dziura jest dokładnie sferyczna i rozwiązanie Kerra pokrywa się z rozwiązaniem Schwarzschilda. Jeśli prędkość obrotowa jest niezerowa, to czarna dziura wybrzusza się w pobliżu swego równika (podobnie jak Ziemia i Słońce wybrzuszają się wskutek swej rotacji); im szybciej czarna dziura się kręci, tym większe jest jej wybrzuszenie. Aby wyniki Israela rozszerzyć, tak aby objęły też obracające się ciała, wysunięto hipotezę, że każdy obracający się obiekt, który ulega grawitacyjnemu zapadaniu i tworzy czarną dziurę, kończy w stanie stacjonarnym opisanym przez rozwiązanie Kerra.
Udowodnienie tej hipotezy zajęło kilka lat. Najpierw, w 1970 roku, mój kolega ze studiów doktoranckich w Cambridge, Brandon Carter, wykazał, że jeśli stacjonarna, rotująca czarna dziura ma, podobnie jak wirujący bąk, oś symetrii, to jej wielkość i kształt mogą zależeć tylko od masy i prędkości rotacji. Następnie, w roku 1971, udało mi się udowodnić, że, istotnie, każda stacjonarna, rotująca czarna dziura posiada oś symetrii. W końcu, w 1973 roku, David Robinson z Kings College w Londynie udowodnił, opierając się na wynikach Cartera i moich, poprawność wspomnianej hipotezy: taka czarna dziura musi rzeczywiście być opisana rozwiązaniem Kerra. A zatem, po grawitacyjnym zapadnięciu się dowolnego obiektu, powstała czarna dziura musi osiągnąć stan stacjonarny; w takim stanie może ona obracać się, ale nie może pulsować. Co więcej, jej kształt i wielkość zależą tylko od masy i prędkości obrotowej, nie zaś od szczegółów budowy ciała, z którego powstała. Ten wynik przyjęło się określać maksymą "czarna dziura nie ma włosów". Twierdzenie o "braku włosów" ma wielkie znaczenie praktyczne, ponieważ ogromnie ogranicza liczbę potencjalnych typów czarnych dziur. Pozwala to nam budować szczegółowe modele obiektów zawierających czarne dziury i porównywać wynikające z nich przewidywania z obserwacjami. Oznacza to też, że ogromna ilość informacji o zapadającym się ciele jest tracona w momencie utworzenia się czarnej dziury, gdyż odtąd można już tylko zmierzyć jego masę i prędkość obrotową. Doniosłe znaczenie tego faktu wyjaśnione będzie w następnym rozdziale.

Czarne dziury stanowią jeden z tych nielicznych wypadków w historii nauki, gdy teoria została szczegółowo rozwinięta jako czysto matematyczny model, zanim pojawiły się jakiekolwiek obserwacyjne dowody jej poprawności. Ten fakt stanowił główny argument przeciwników koncepcji czarnych dziur: jakże można wierzyć w istnienie obiektów, za którymi przemawiały wyłącznie rachunki, oparte na tak wątpliwej teorii, jak ogólna teoria względności? - pytali. Jednakże w 1963 roku Maarten Schmidt, astronom z obserwatorium na Mt. Palomar w Kalifornii, zmierzył przesunięcie ku czerwieni światła docierającego z bardzo słabego, podobnego do gwiazdy obiektu, położonego w tym samym punkcie na niebie, co źródło fal radiowych zwane 3C273 (to jest źródło numer 273 w trzecim katalogu radioźródeł opracowanym w Cambridge). Zaobserwowane przez Schmidta przesunięcie ku czerwieni było zbyt wielkie, by mogło zostać spowodowane przez jakieś pole grawitacyjne: gdyby tak było, obiekt


Kwazar

 wytwarzający to pole musiałby mieć tak wielką masę i znajdować się tak blisko nas, że zaburzałby orbity planet Układu Słonecznego. Przesunięcie ku czerwieni musiało zatem wynikać z rozszerzania się wszechświata, co oznaczało z kolei, że źródło światła musiało być bardzo odległe. Tak daleki obiekt można zaobserwować tylko wtedy, jeśli jest on bardzo jasny, to znaczy jeśli emituje ogromną ilość energii. Jedynym mechanizmem zdolnym do wytworzenia tak wielkiej energii, jaki wchodził tu w ogóle w rachubę, byłoby grawitacyjne zapadanie się, i to nie pojedynczej gwiazdy, lecz całego centralnego rejonu galaktyki. Później odkryto bardzo wiele podobnych quasi-gwiazd, czyli kwazarów [od angielskiego quasi-stellar object - P.A.]; światło wszystkich kwazarów odznacza się bardzo dużym przesunięciem ku czerwieni. Niestety, wszystkie one znajdują się zbyt daleko, by można było dokładnie je obserwować i uzyskać ostateczny dowód istnienia czarnych dziur.
Kolejnego argumentu przemawiającego za istnieniem czarnych dziur dostarczyła Jocelyn Bell, doktorantka z Cambridge, która w 1967 roku odkryła na niebie obiekty emitujące niezwykle regularne impulsy fal radiowych. Początkowo Bell i jej opiekun naukowy Antony Hewish sądzili, że udało im się nawiązać kontakt z inną cywilizacją w naszej Galaktyce! Pamiętam, że na seminarium, na którym ogłosili swoje odkrycie, nazywali pierwsze cztery odkryte źródła LGM1-4, od Little Green Men [mali zieloni ludzie - P.A.]. W końcu jednak i oni, i wszyscy inni naukowcy doszli do mniej romantycznego wniosku, iż obiekty te, nazwane pulsarami, są szybko rolującymi gwiazdami neutronowymi, które wysyłają fale radiowe w wyniku skomplikowanego oddziaływania ich pola magnetycznego z otaczającą je materią. Była to kiepska wiadomość dla autorów kosmicznych westernów, ale przyniosła nową nadzieję niewielkiej grupie fizyków, którzy już wtedy wierzyli w istnienie czarnych dziur, ponieważ stanowiła pierwszy bezpośredni dowód istnienia gwiazd neutronowych. Promień gwiazdy neutronowej wynosi około 15 kilometrów, wystarczyłoby, żeby był kilka razy mniejszy i gwiazda stałaby się czarną dziurą. Jeśli normalna gwiazda mogła kurczyć się do tak małych rozmiarów i stać się gwiazdą neutronową, to uzasadnione jest przypuszczenie, że inna gwiazda skurczy się jeszcze bardziej i zmieni w czarną dziurę.

Jak można w ogóle odkryć czarną dziurę, jeśli z definicji nie wysyła ona żadnego światła? Przypomina to trochę szukanie czarnego kota w piwnicy z węglem. Na szczęście jednak istnieje pewien sposób. Jak już wskazał John Michell w swej pionierskiej pracy z 1783 roku, czarna dziura w dalszym ciągu oddziałuje grawitacyjnie na pobliskie obiekty. Astronomowie zaobserwowali bardzo wiele układów dwóch gwiazd obracających się wokół siebie wskutek wzajemnego przyciągania grawitacyjnego. Czasami widać tylko jedną gwiazdę, okrążającą swego niewidocznego towarzysza. Oczywiście, nie można wtedy twierdzić natychmiast, że niewidoczny towarzysz jest czarną dziurą - może być po prostu zwyczajną gwiazdą o bardzo małej jasności. Jednakże niektóre z takich układów podwójnych, na przykład układ zwany Łabędź X-1, ;i są również silnymi źródłami promieniowania rentgenowskiego. Emisję promieniowania rentgenowskiego daje się najlepiej wyjaśnić, zakładając, że z powierzchni widocznej gwiazdy zdmuchiwana jest materia, która, spadając na niewidocznego towarzysza, tworzy spiralę (podobnie jak woda spływająca z wanny). Spadając materia rozgrzewa się i emituje promieniowanie rentgenowskie (rys. 19). Aby taki mechanizm działał, niewidoczny obiekt musi być bardzo mały - jak biały karzeł, gwiazda neutronowa lub czarna dziura. Obserwując orbitę widocznej gwiazdy, potrafimy wyznaczyć minimalną masę niewidocznego towarzysza. W wypadku Łabędzia X-1 masa ta jest sześć razy większa niż masa Słońca, a więc zgodnie z wynikami Chandrasekhara, jest zbyt dużą masą jak na białego karła czy na gwiazdę neutronową. Wydaje się zatem, że musi to być czarna dziura.

Istnieją inne modele wyjaśniające zachowanie Łabędzia X-1, obywające się bez założenia o istnieniu czarnej dziury, ale wszystkie są raczej naciągane. Czarna dziura wydaje się jedynym naturalnym, zgodnym z rzeczywistością wyjaśnieniem wyników obserwacji. Mimo to założyłem się z Kipem Thornem z Kalifornijskiego Instytutu Technologii, że w Łabędziu X-1 nie ma czarnej dziury! Zakład ten jest dla mnie rodzajem polisy ubezpieczeniowej. Włożyłem wiele pracy w badania czarnych dziur i poszłaby ona na marne, gdyby okazało się, że czarne dziury nie istnieją. W takim wypadku na pocieszenie wygrałbym zakład, co zapewniłoby mi czteroletnią prenumeratę pisma "Private Eye". Jeśli czarne dziury istnieją, Kip będzie przez rok otrzymywać "Penthouse" [amerykański miesięcznik pornograficzny - P.A.]. Gdy zakładaliśmy się w 1975 roku, mieliśmy 80% pewności, że w Łabędziu X-1 istnieje czarna dziura; powiedziałbym, że obecnie pewność wzrosła do 95%, ale zakład nie został jeszcze rozstrzygnięty.

---
ScanRider - Obecnie na rok 2002 jest już w 100% potwierdzone istnienie czarnych dziur a w tym również w gwiazdozbiorze Łabędzie zwanego dziś "Cygnus X". Dowodem okazały się kwazary, które są czarnymi dziurami, na które opada materia, a opadająca materia rozgrzewa się do ogromnych temperatur i emituje wysokoenergetyczne promieniowanie, a z centrum czarnej dziury (kwazara) wytryskują strumienie cząstek ekementarnych  - "dżety (Jety)" zwane promieniowaniem Hawkinga. Przypuszcza się, że w centrum naszej Galaktyki na 99% również znajduje się czarna dziura.
-----

Dysponujemy dziś obserwacjami wskazującymi na istnienie czarnych dziur w paru innych układach, podobnych do Łabędzia X-1, w naszej Galaktyce i w dwóch sąsiednich, zwanych Obłokami Magellana. Jednakże liczba czarnych dziur jest niemal na pewno o wiele większa. W ciągu długiej historii wszechświata wiele gwiazd musiało wypalić swoje paliwo jądrowe i zapaść się. Czarnych dziur może być nawet więcej niż zwykłych gwiazd, których jest około stu miliardów tylko w naszej Galaktyce. Dodatkowe przyciąganie grawitacyjne tak wielu czarnych dziur wyjaśnia, być może, dlaczego galaktyki obracają się tak szybko, jak to obserwujemy - masa widocznych gwiazd jest zbyt mała, by to wyjaśnić. Mamy też pewne podstawy by przypuszczać, że o wiele większa czarna dziura, o masie około stu tysięcy razy większej od masy Słońca, znajduje się w centrum naszej Galaktyki.

Gwiazdy, które zbliżają się do tej czarnej dziury, zostają rozerwane wskutek różnicy sił grawitacyjnych między stroną bliższą czarnej dziurze a stroną bardziej odległą. Ich resztki, wraz z gazem porwanym z innych gwiazd, spadają na czarną dziurę. Gaz spadając po spirali, rozgrzewa się, podobnie jak w wypadku Łabędzia X-1, tyle że słabiej, jego temperatura jest zbyt niska, by nastąpiła emisja promieniowania rentgenowskiego. Mechanizm ten może natomiast wyjaśnić istnienie bardzo zwartego źródła fal radiowych i promieniowania podczerwonego, które obserwuje się w centrum galaktyki.
Sądzi się powszechnie, że podobne, lecz jeszcze większe czarne dziury, o masach około stu milionów razy większych od masy Słońca, znajdują się w jądrach kwazarów. Materia spadająca na czarną dziurę o tak wielkiej masie stanowi jedyne możliwe źródło energii, dostatecznie silne, by wytłumaczyć pochodzenie olbrzymiej energii, jaką wypromieniowują kwazary. Spadająca na czarną dziurę po spiralnym torze materia sprawia, że czarna dziura zaczyna, obracać się w tym samym kierunku, co materia. Rotacja czarnej dziury powoduje powstanie pola magnetycznego, przypominającego ziemskie pole magnetyczne. Spadek materii sprawia, że w pobliżu czarnej dziury tworzy się bardzo dużo cząstek o wysokiej energii. Pole magnetyczne bywa tak silne, że może zogniskować te cząstki w strugi wyrzucane na zewnątrz wzdłuż osi rotacji czarnej dziury (Jety). Takie strugi obserwuje się rzeczywiście w wielu kwazarach i galaktykach.

Spróbujmy rozważyć także możliwość istnienia czarnych dziur o masie znacznie mniejszej niż masa Słońca. Takie czarne dziury nie mogły powstać wskutek grawitacyjnego zapadania, ponieważ ich masy są mniejsze niż granica Chandrasekhara: gwiazdy o tak niewielkiej masie są w stanie zrównoważyć siłę ciążenia nawet po wyczerpaniu zapasu paliwa jądrowego. Czarne dziury o małej masie mogą powstać tylko wskutek ściśnięcia materii przez ogromne ciśnienie zewnętrzne. Podobne warunki mogą powstać w trakcie wybuchu bardzo dużej bomby wodorowej. Jak obliczył John Wheeler, gromadząc ciężką wodę zawartą we wszystkich oceanach, można zbudować bombę wodorową zdolną do takiego ściśnięcia materii w swym środku, że powstałaby czarna dziura. (Oczywiście, nikt już nie mógłby jej obserwować!) Bardziej realne jest powstanie czarnych dziur o małych masach w bardzo wysokiej temperaturze i przy ogromnym ciśnieniu panującym we wczesnym okresie historii wszechświata. Wtedy czarne dziury mogły powstać, jeśli tylko wszechświat nie był doskonale gładki i jednorodny, ponieważ tylko mały obszar, w którym materia miała gęstość większą od gęstości średniej, mógł zostać zgnieciony tak mocno, by powstała czarna dziura. A wiemy przecież, że jakieś zaburzenia jednorodności istnieć musiały, gdyż inaczej materia we wszechświecie byłaby rozłożona doskonale jednorodnie również dzisiaj, zamiast gromadzić się w gwiazdach i galaktykach.

Czy nieregularności, konieczne do wyjaśnienia istnienia gwiazd i galaktyk, powodują również powstanie znaczącej liczby "pierwotnych" czarnych dziur, zależy oczywiście od szczegółów warunków początkowych we wczesnym wszechświecie. Jeśli zatem potrafilibyśmy wyznaczyć liczbę pierwotnych czarnych dziur istniejących do dzisiaj, dowiedzielibyśmy się wiele o bardzo wczesnych etapach ewolucji wszechświata. Pierwotne czarne dziury o masie większej niż miliard ton (masa dużej góry) można wykryć tylko dzięki ich grawitacyjnemu oddziaływaniu na widoczną materię lub mierząc ich wpływ na rozszerzanie się wszechświata. Jak się jednak przekonamy w następnym rozdziale, czarne dziury nie są wcale czarne; żarzą się jak gorące ciało, przy czym im są mniejsze, tym mocniej świecą. A zatem paradoksalnie, niewielkie czarne dziury mogą okazać się łatwiejsze do wykrycia niż duże!